UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE Faculty of Chemical Engineering **Department of Chemical Engineering**

Advanced Pyrolysis Model Approach in FDS

Author:

M.Sc. Vojtěch Šálek

Supervisor:

Assoc. Prof. Milan Jahoda

Supervisor-specialist:

Dr. Lucie Hasalová

Pyrolysis

- Gaseous phase influence solid phase and vice versa
- How fast is gasification? \dot{m} (mass loss rate, MLR)
- FDS (Fire Dynamics Simulator)
- Different approaches (variously complex), 2 main

Fire Consequence Modeling

- HRR (Heat release rate) $\dot{q}^{\prime\prime}$
- Heat of combustion ΔH_C

$$\dot{q}^{\prime\prime} = \dot{m} \Delta H_C$$

Complex Pyrolysis Modeling

 Heat transfer, heat conduction, decomposition kinetics, combustion, smoke production and transport, etc.
 -> complicated – a lot of input parameters

 v_1 Wood component $1 \longrightarrow v_{CH,1}$ Char + Combustible gases v_2 Wood component $2 \longrightarrow v_{CH,2}$ Char + Combustible gases v_3 Wood component $3 \longrightarrow v_{CH,3}$ Char + Combustible gases

Consequence vs. Complex Modeling

Consequence modeling	
parameters	
Pyr. gas composition	
Soot yield	
Density	
Heat conductivity	
Specific heat	
Emissivity	
Heat release rate	
Ignition temperature	
11 vs.	30

- Is 11 enough? For which scenario?
- Validation!

Complex modeling parameters	How to obtain
Pyr. gas composition	El. analysis, lit.
Soot yield	Cone calorimetry
Density	Directly, lit.
Heat conductivity	Exp., literature
Specific heat	DSC, literature
Emissivity	Literature
Char density	Directly, lit.
Char heat cond.	Exp., literature
Char specific heat	DSC, literature
Char emissivity	Literature
Preexp. factor	TGA – opt.
Activation energy	TGA – opt.
Order of reaction	TGA – opt.
Heat of reaction	DSC
Heat of combustion	Cone calorimetry
Stoch. coeff. of char	TGA
Stoch. coeff. of	TCA
decomposing comp.	1 GA – opt.

RCT (Room Corner Test)

- Test facility to determine Reaction to fire of facing materials (walls and ceilings)
- Burner location and fire load according to ISO 9705-1
- Room 2,4 x 3,6 x 2,4 m + hood 3 x 3 m + exhaust duct
- Walls covered by OSB board

Room Corner Test – FDS model

Investigated Material - OSB

- Engineered/Composite board
- Building material, insulation, interiors
- Charring, inhomogeneous
- Complex chemical structure (lignin, cellulose, hemicellulose) + adhesives + additives

Experimental Data - Thermocouple

Experimental Data - Thermocouple

Experimental Data - Thermocouple

Experimental Data - Comparison

Experimental Data - Comparison

Temperature Dependent Properties

• Eurocode ČSN EN 1995-1-2

Experimental Data - Comparison

Temperature Dependent Properties

- Eurocode ČSN EN 1995-1-2
- No evaporation

Experimental Data - Comparison

- Different pyrolysis models in RCT for OSB board
- HRR modeling insufficient
- Thermal properties most significant

- Thermal properties from cone (PROPTI)
- Coupling with structural solvers
- More detailed char analysis

- Different pyrolysis models in RCT for OSB board
- HRR modeling insufficient
- Thermal properties most significant

- Thermal properties from cone (PROPTI) In a minute
- Coupling with structural solvers
- More detailed char analysis

- Different pyrolysis models in RCT for OSB board
- HRR modeling insufficient
- Thermal properties most significant

- Thermal properties from cone (PROPTI) [In a minute
- Coupling with structural solvers
- More detailed char analysis

Czech Technical University

- Different pyrolysis models in RCT for OSB board
- HRR modeling insufficient
- Thermal properties most significant

- Thermal properties from cone (PROPTI) In a minute
- Coupling with structural solvers

Czech Technical University

More detailed char analysis

New FDS version 6.7.4

- Update from 6.7.1
- Results differ

FDS 6.7.4 (March 9, 2020)

- Allow particles to follow a PATH_RAMP(3) on the INIT line; particle DEVC output works as usual, so this has the effect of allowing DEVC positions to move in time
- Fix bug with FDS+Evac and ZONEs
- Fix bug in mass flux of species at exterior boundaries introduced in v6.7.3 for thin obstructions
- Fix bug that prevented defining an INIT with a species mass fraction of 0 (i.e. override a non-zero MASS_FRACTION_0 on SPEC).
- Fix bug in the initialization of pressure at ambient ducts nodes to correctly use the reference elevation.
- Fix bug in the computation of the initial water vapor mass fraction for HUMIDITY.
- Fix bug preventing the use of TMP_INNER or RAMP_T_I for a particle.
- · Generalize histogram generation for regular devices.
- Improve MEAN_FORCING functionality by averaging velocity over entire domain, not just entire mesh.
- Allow level set wildland fire fronts to cross mesh boundaries.
- Make baroclinic pressure iteration work with GLMAT pressure solver.

New FDS version 6.7.4

Solid phase discretization

FDS 6.7.3 (Oct 31, 2019)

- Allow thin obstructions to burn.
- Force explicit setting of mesh transformation ID on MESH line via TRNX_ID, etc. This allows for much greater flexibility in assigning different transformations to different mesh groups for large-scale calculations.
- STRETCH_FACTOR default value set to 2 for all surfaces, even burning surfaces. STRETCH_FACTOR controls the size of solid phase cells used to solve the 1-D heat transfer equation.
- Fixed a bug involving pressure ZONEs. A post to the Forum on June 18th identified a bug where an OBST that formed a
 boundary between two ZONEs extended over multiple meshes and changed state during the simulation (i.e. had a CTRL_ID
 or DEVC_ID). As a result of the bug, the ZONEs were not properly initialized.
- Fixed a bug in MIN/MAX CTRL functions.
- Create a ZONE using a single XYZ point instead of an XB volume spanning multiple meshes.
- Increase length of FORMULA (both REAC and SPEC) to 255 characters
- PATH_RAMP on INIT can specify a path for a particle.
- Added HEAT_OF_REACTION_RAMP to MATL to specify a temperature dependent heat of reaction.
- Added RAMP_T_B to SURF to specify a time dependent back wall gas temperature.

Gas phase discretization

- Standard procedure
- Adding cells until they affect results

Moghaddam, A. Z., Moinuddin, K., Thomas, I. R., Bennetts, I. D. and Culton, M. (2004) Fire Behaviour Studies of Combustible Wall Linnings Applying Fire Dynamics Simulator, 15th Australasian Fluid Mechanics Conference.

• Need to solve partial differential equations for heat conduction

$$\rho_{\rm s}c_{\rm s}\frac{\partial T_{\rm s}}{\partial t} = \frac{\partial}{\partial x}\left(k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}\right) + \dot{q}_{\rm s}^{\prime\prime\prime} \qquad -k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}(0,t) = \dot{q}_{\rm c}^{\prime\prime} + \dot{q}_{\rm r}^{\prime\prime}$$

$$\frac{T_{s,i}^{n+1}-T_{s,i}^n}{\delta t}$$

Need to solve partial differential equations for heat conduction

$$\rho_{\rm s}c_{\rm s}\frac{\partial T_{\rm s}}{\partial t} = \frac{\partial}{\partial x}\left(k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}\right) + \dot{q}_{\rm s}^{\prime\prime\prime} \qquad \qquad -k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}(0,t) = \dot{q}_{\rm c}^{\prime\prime} + \dot{q}_{\rm r}^{\prime\prime} \qquad \qquad \frac{T_{s,i}^{n+1} - t_{s,i}}{\delta t}$$

Crank-Nicolson scheme (implicit)

$$(\rho_{s}c_{s})_{i}\frac{T_{s,i}^{n+1}-T_{s,i}^{n}}{\delta t} = \frac{1}{2r_{c,i}^{I}\delta r_{i}}\left(r_{i}^{I}k_{s,i+\frac{1}{2}}\frac{T_{s,i+1}^{n}-T_{s,i}^{n}}{\delta r_{i+\frac{1}{2}}} - r_{i-1}^{I}k_{s,i-\frac{1}{2}}\frac{T_{s,i}^{n}-T_{s,i-1}^{n}}{\delta r_{i-\frac{1}{2}}}\right) + \frac{1}{2r_{c,i}^{I}\delta r_{i}}\left(r_{i}^{I}k_{s,i+\frac{1}{2}}\frac{T_{s,i+1}^{n+1}-T_{s,i}^{n+1}}{\delta r_{i+\frac{1}{2}}} - r_{i-1}^{I}k_{s,i-\frac{1}{2}}\frac{T_{s,i-1}^{n+1}-T_{s,i-1}^{n+1}}{\delta r_{i-\frac{1}{2}}}\right) + \dot{q}_{s,i}'''$$

Need to solve partial differential equations for heat conduction

$$-k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}(0,t) = \dot{q}_{\rm c}'' + \dot{q}_{\rm r}''$$

$$\frac{T_{s,i}^{n+1}-T_{s,i}^n}{\delta t}$$

• Default discretization:

 $\rho_{\rm s}c_{\rm s}\frac{\partial T_{\rm s}}{\partial t} = \frac{\partial}{\partial x}\left(k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}\right) + \dot{q}_{\rm s}^{\prime\prime\prime}$

- Wall increment = 2
- Stretch factor = 2
- First cell size $\leq \sqrt{tk_s/\rho c_s}$
- Cell size factor = 1
- Why is default not sufficient?

Why is the default not sufficient?

- Reaction rate! (3 pyrolysis reactions)
- Temperature dependent properties

• Need to solve partial differential equations for heat conduction

$$-k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}(0,t) = \dot{q}_{\rm c}'' + \dot{q}_{\rm r}''$$

$$\frac{T_{s,i}^{n+1}-T_{s,i}^n}{\delta t}$$

• Default discretization:

 $\rho_{\rm s}c_{\rm s}\frac{\partial T_{\rm s}}{\partial t} = \frac{\partial}{\partial x}\left(k_{\rm s}\frac{\partial T_{\rm s}}{\partial x}\right) + \dot{q}_{\rm s}^{\prime\prime\prime}$

- Wall increment = 2
- Stretch factor = 2
- First cell size $\leq \sqrt{tk_s/\rho c_s}$
- Cell size factor = 1

- Adjusted discretization:
 - Wall increment = 1
 - Stretch factor = 1
 - Cell size factor < 1
 - Large increase in computational time

- Inappropriate to observe solid phase discretization effect from large scale models and from gas phase cells properties
- Focus only on solid phase (solid phase only = true) -> Cone
- Simplest geometry possible

- 50 kW
- 6 sec, 10 cells

- 50 kW
- 6 sec, 10 cells

- 50 kW
- 7 sec, 42 cells

- 50 kW
- 8 sec, 83 cells

- 50 kW
- 15 sec, 204 cells

- 50 kW
- 42 sec, 407 cells

Effect	$\mathbf{k}_{\mathrm{solid}}$	$c_{p,solid}$	$\mathbf{k}_{\mathrm{char}}$	$c_{p,char}$	ΔH	ΔH_c
Time of ignition (T_{ign})	+	+	0	0	0	0
1st peak (width) (w_1)	0	0	+	0	(-)	0
1st peak (height) (h_1)	0	0	0	0	(-)	+
Depth of valley (d)	0	+	-	0	+	+
2nd peak (time) (T_2)	-	+	-	0	0	+
2nd peak (height) (h_2)	+	+	+	-	-	+

FDS - PROPTI cone calorimetry model

- Optimization, analogy to kinetics from TGA data
- Selection of searched parameters
 - *c_s* of char <0.2; 2.0> (literature 0.8)
 - *k_s* of char <0.02; 0.3> (literature 0.1)
 - c_s of all 3 wood components <0.3; 3> (literature 1.221)
 - *k_s* of all 3 wood components <0.02; 0.3> (literature 0.098)

```
&MATL ID='LIGNIN',
	SPECIFIC_HEAT=#Cp_01#,
	CONDUCTIVITY=#K_01#,
	DENSITY=587.1,
	N_REACTIONS=1.,
	A(1)=38018940.,
	E(1)=112460.,
	N_S(1)=1.21,
	MATL_ID(1,1)='CHAR',
	NU_MATL=0.2306,
	SPEC_ID(1,1)='REAC_FUEL',
	NU_SPEC(1,1)=0.7694,
	HEAT_OF_REACTION=77.7,
	HEAT_OF_COMBUSTION=11710. /
```

&MATL ID='CHAR', SPECIFIC HEAT=#Cp CH#, CONDUCTIVITY=#K CH#, DENSITY=299.0/

FDS - PROPTI cone calorimetry model

- Optimized parameters (from 50 kW)
 - *c_s* of char **0.204** (literature 0.8)
 - *k_s* of char **0.104** (literature 0.1)
 - c_s of all 3 wood components **2.509** (literature 1.221)
 - k_s of all 3 wood components **0.177** (literature 0.098)

FDS - PROPTI cone calorimetry model

- *c_s* of char **0.222** (literature 0.8)
- *k_s* of char **0.083** (literature 0.1)
- c_s of all 3 wood components **2.356** (literature 1.221)
- k_s of all 3 wood components **0.179** (literature 0.098)
- ΔH_c of all 3 wood components **15756** (experiment 11710)

Experimental Data - Comparison

Experimental Data - Comparison

- Solid phase discretization
- Promissing RCT model outputs using PROPTI

- Thermal properties from cone at different heat flows (PROPTI)
- Different materials (spruce, chipboard)
- More detailed cone model using HT3D and char properties

Thank you for your attention

This work was supported from the grant of Specific university research – grant No A2_FCHI_2020_012 and by the Ministry of Interior, Safety research Programme of the Czech Republic 2015 – 2022 (BV III/1-VS) under number VI3VS/741 - Fire development modelling of engineered wood.